Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency.

نویسندگان

  • Hiroki Makita
  • Gary Hastings
چکیده

In all photosynthetic organisms, light energy is used to drive electrons from a donor chlorophyll species via a series of acceptors across a biological membrane. These light-induced electron-transfer processes display a remarkably high quantum efficiency, indicating a near-complete inhibition of unproductive charge recombination reactions. It has been suggested that unproductive charge recombination could be inhibited if the reaction occurs in the so-called inverted region. However, inverted-region electron transfer has never been demonstrated in any native photosynthetic system. Here we demonstrate that the unproductive charge recombination in native photosystem I photosynthetic reaction centers does occur in the inverted region, at both room and cryogenic temperatures. Computational modeling of light-induced electron-transfer processes in photosystem I demonstrate a marked decrease in photosynthetic quantum efficiency, from 98% to below 72%, if the unproductive charge recombination process does not occur in the inverted region. Inverted-region electron transfer is therefore demonstrated to be an important mechanism contributing to efficient solar energy conversion in photosystem I. Inverted-region electron transfer does not appear to be an important mechanism in other photosystems; it is likely because of the highly reducing nature of photosystem I, and the energetic requirements placed on the pigments to operate in such a regime, that the inverted-region electron transfer mechanism becomes important.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs

This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins.

Dye-sensitized solar cells (DSCs) are currently attracting considerable attention because of their high light-to-electricity conversion efficiencies, ease of fabrication, and low production costs. Many recent efforts have been devoted to the development of new and efficient sensitizers that are suitable for practical use. Among the investigated compounds, ruthenium sensitizers have been disting...

متن کامل

Efficiency of solar energy conversion as a function of light intensity*

The kinetic model has been developed for disserting the efficiency of solar energy conversion as a function of light intensity. A comparison of theory with experimental results shows that the model provides a satisfactory agreement. We have estimated the essential parameters of photosynthetic systems (the size of the photosynthetic antenna, the rate of electron transport, the correlation betwee...

متن کامل

Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region

In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 35  شماره 

صفحات  -

تاریخ انتشار 2017